Hyporheic Exchange Driven by Three‐Dimensional Sandy Bed Forms: Sensitivity to and Prediction from Bed Form Geometry

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Formation of a sandy near-bed transport layer from a fine-grained bed under oscillatory flow

[1] Bed surface coarsening was found to be an important effect for the formation of ripples and the dynamics of the boundary layer above a predominantly silt-sized sediment bed (median particle size equal to 26 mm; 20% fine sand, 70% silt, 10% clay) under oscillatory flow (with orbital velocities of 0.32–0.52 m/s) in a laboratory wave duct. Following bed liquefaction, substantial winnowing of t...

متن کامل

Hyporheic exchange in gravel bed rivers with pool-riffle morphology: Laboratory experiments and three-dimensional modeling

[1] We report the first laboratory simulations of hyporheic exchange in gravel pool-riffle channels, which are characterized by coarse sediment, steep slopes, and three-dimensional bed forms that strongly influence surface flow. These channels are particularly important habitat for salmonids, many of which are currently at risk worldwide and which incubate their offspring within the hyporheic z...

متن کامل

Multiscale statistical characterization of migrating bed forms in gravel and sand bed rivers

[1] Migrating bed forms strongly influence hydraulics, transport, and habitat in river environments. Their dynamics are exceedingly complex, making it difficult to predict their geometry and their interaction with sediment transport. Acoustic instrumentation now permits high-resolution observations of bed elevation as well as flow velocity. We present a space-time characterization of bed elevat...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Water Resources Research

سال: 2018

ISSN: 0043-1397,1944-7973

DOI: 10.1029/2018wr022663